Влияние типа напряженного состояния земной коры на проницаемость пород проявляется через механизм трещинообразования, заключающегося в формировании трехкомпонентной сети трещин, две из которых (сопряженная пара сколов) параллельны площадкам действия максимальных касательных напряжений τmax, пересекаются с осью σ2, симметричны оси σ3 и образуют с ней угол скола (α =< 45o). Третья система трещин растяжения (отрыва) формируется параллельно оси максимальных главных нормальных сжимающих напряжений σ3 и ориентирована в плоскости, проходящей через оси максимальных и средних главных нормальных сжимающих напряжений (σ1σ2). При этом ориентировка и генетические типы трещин контролируются стационарным положением осей напряжений и во времени в процессе структурообразования (смены типов НДС и миграции осей напряжений) переменны. Ниже приводится обоснование этого вывода.
Эксперименты по испытанию материалов и теоретические исследования показали (М.В.Гзовский, 1975), что интенсивность касательных напряжений σi (пропорциональна октаэндрическим касательным напряжениям τ = sqrt(2/3)τок) является той особенностью напряженного состояния, которая определяет искажение формы напряженного тела (без изменения объема), характеризуемое интенсивностью деформации сдвига γi. В свою очередь, средняя величина нормальных напряжений σm = (σ1+σ2+σ3) / 3 определяет изменение объема тела, характеризуемое средней величиной из трех главных удлинений εm по осям xyz. В общем случае интенсивность касательных напряжений σi и средняя величина нормальных напряжений σm (всестороннее давление), равная нормальному напряжению на тех же площадках, одинаково наклоненных к осям напряжений σm, в совокупности служат обобщенной характеристикой напряженного состояния тела. Таким образом, в соответствии с положением осей напряжений, действующие нормальные и тангенциальные усилия воспринимаются трещинами по-разному. В зависимости от ориентировки в силовом поле сдвиговых напряжений формирование генетических типов трещин подчинено следующей закономерности:
а) трещины растяжения (отрывы, сбросы) формируются вдоль площадок действия максимальных главных нормальных сжимающих напряжений σ1 в плоскости σ1σ2;
б) трещины скола (сдвиги) формируются вдоль площадок действия максимальных касательных напряжений τmax;
в) трещины сжатия (стилолитовые швы) формируются вдоль площадок действия минимальных главных нормальных сжимающих напряжений σ3 в плоскости σ2σ3.
Независимо от генезиса (палеонапряжения) и кинематики современные пространственные соотношения в силовом поле новейших напряжений определяют раскрытость и проницаемость трещин, а реконструкции напряженно-деформированного состояния земной коры позволяют дифференцировать трещины по генетическим типам и, соответственно, по их раскрытости и проницаемости для фильтрации УВ. Поскольку, образование трещин отрыва связывается с площадками действия нормальных напряжений, а трещин скалывания с площадками действия касательных напряжений, первые будут раскрытыми на глубине и эффективными для фильтрации флюидов при формировании залежей нефти и газа и их вскрытии скважинами.
С другой стороны известно, что картируемые повсеместно сейсморазведкой 2Д, гравимагниткой, структурно-геоморфологическими и дистанционными методами исследований нарушения чехла и фундамента являются структуроформирующими и представлены генетическими типами трещин и разрывов скола. Прямой учет параметров этих нарушений для прогноза структурных признаков проницаемости приводит к грубым ошибкам. Без кинематической идентификации их использование для прогноза проницаемости пород невозможно. Использование геометрических параметров трещин без определения их генетического типа и реконструкций напряженно-деформированного состояния горных пород (определение типа, ориентировки осей напряжений и соотношений трещинных систем и объемного тензора проницаемости с осями тензора напряжений), даже в условиях максимально детальной информации о распределении трещиноватости в объеме изучаемого массива, не обеспечивает решение задач прогнозирования структурных признаков проницаемости.